e. L1: (-2, 5), (-2, 7) and L2: (5, 1), (5, 13)

Slope
$$L_1 = \frac{7-5}{-2-(-i)} = \frac{2}{0}$$

Slope $L_2 = \frac{13-1}{5-5} = \frac{12}{0}$
= undefined Undefined

L, IIL2

Write the slope-intercept form of the equation of the line through the given point with the given slope. Show your work.

1) through:
$$(-1, 1)$$
, slope = 4

2) through:
$$(1, 5)$$
, slope = 3

3) through:
$$(2, -2)$$
, slope = $-\frac{5}{6}$

4) through:
$$(-2, 3)$$
, slope = $-\frac{5}{7}$

5) through: (-1, -2), slope = $\frac{3}{2}$

6) through: (-2, 3), slope = -1

A. What is an equation of the line through P that is parallel to ℓ ?

$$P(431) m = \frac{1}{2}$$

 $Y-1=\frac{1}{2}(x-4)$
 $Y-1=\frac{1}{2}x-2$
 $Y=\frac{1}{2}x-1$

B. What is the equation of the line through P that is perpendicular to P?

Slope $l = \frac{1}{2}$ Slope of $L = \frac{2}{1} = -2$

Slope
$$l = \frac{1}{2}$$
 Slope of $L = \frac{-2}{1} = -2$

AB.
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

Find the midpoint of segment AB.
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$
 $\left(\frac{-1+5}{2}, \frac{y_1+y_2}{2}\right)$

Find the equation of the line perpendicular to AB that goes through the midpoint.

Write the slope-intercept form of the equation of the line described.

through:
$$(2, 2)$$
, parallel to $y = x + 4$
 $m = 1$

through:
$$(2, -1)$$
, parallel to $y = -\frac{2}{5}x + 3$

$$m = -\frac{2}{5} \quad (2,-1)$$

$$y = -\frac{2}{5}x - \frac{1}{5}$$

through:
$$(2, -4)$$
, parallel to $y = 3x + 2$
 $m = 3$ $(2, -4)$

Write the slope-intercept form of the equation of the line described.

through:
$$(1, -5)$$
, perp. to $y = \frac{1}{8}x + 2$
 $m = -8$ $(1, -5)$

$$\lambda = -8x + 3$$

 $\lambda + 2 = -8x + 8$
 $\lambda + 2 = -8(x - 1)$

through: (3, 1), perp. to $y = -\frac{2}{3}x + 4$

through: (3, 4), perp. to
$$y = -2x - 4$$

 $m = \frac{1}{3}(3, 4)$
 $\forall -4 = \frac{1}{3}(x - 3)$
 $\forall -4 = \frac{1}{3}(x - 3)$

- **4.** What are equations of lines parallel and perpendicular to the given line k passing through point T?
- a. y = -3x + 2; T(3, 1)

$$y-1=\frac{1}{5}(x-3)$$

$$\gamma = \frac{1}{3} \times$$

b.
$$y = \frac{3}{4}x - 5$$
; $T(12, -2)$

10. What is an equation for the line parallel to y = -x + 7 that passes through (7, -2)?

$$y+2=-(x-7)$$

 $y+2=-x+7$
 $y=-x+5$

11. What is an equation for the line perpendicular to y = 3x - 1 that passes through (-9, -2)?

$$\gamma + \lambda = -\frac{1}{3}(x+5)$$

 $\gamma + \lambda = -\frac{1}{3}x-3$
 $\gamma = -\frac{1}{3}x-5$

Are lines g and n parallel?

Are lines j and m parallel?

. Are lines n and k perpendicular?

Are lines h and j perpendicular?

VL C.5 Duc Friday %10@ 11pm